Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1306006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099150

RESUMO

Introduction: Rod bipolar cells (RBCs) faithfully transmit light-driven signals from rod photoreceptors in the outer retina to third order neurons in the inner retina. Recently, significant work has focused on the role of leucine-rich repeat (LRR) proteins in synaptic development and signal transduction at RBC synapses. We previously identified trophoblast glycoprotein (TPBG) as a novel transmembrane LRR protein localized to the dendrites and axon terminals of RBCs. Methods: We examined the effects on RBC physiology and retinal processing of TPBG genetic knockout in mice using immunofluorescence and electron microscopy, electroretinogram recording, patch-clamp electrophysiology, and time-resolved membrane capacitance measurements. Results: The scotopic electroretinogram showed a modest increase in the b-wave and a marked attenuation in oscillatory potentials in the TPBG knockout. No effect of TPBG knockout was observed on the RBC dendritic morphology, TRPM1 currents, or RBC excitability. Because scotopic oscillatory potentials primarily reflect RBC-driven rhythmic activity of the inner retina, we investigated the contribution of TPBG to downstream transmission from RBCs to third-order neurons. Using electron microscopy, we found shorter synaptic ribbons in TPBG knockout axon terminals in RBCs. Time-resolved capacitance measurements indicated that TPBG knockout reduces synaptic vesicle exocytosis and subsequent GABAergic reciprocal feedback without altering voltage-gated Ca2+ currents. Discussion: TPBG is required for normal synaptic ribbon development and efficient neurotransmitter release from RBCs to downstream cells. Our results highlight a novel synaptic role for TPBG at RBC ribbon synapses and support further examination into the mechanisms by which TPBG regulates RBC physiology and circuit function.

2.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37643015

RESUMO

Protein Kinase C alpha (PKCα) is a critical signaling molecule that plays a crucial role in various physiological processes, including cell growth, differentiation, and survival. Over the years, there has been a growing interest in targeting PKCα as a promising drug target for the treatment of various diseases, including cancer. Targeting PKCα can, therefore, serve as a potential strategy to prevent cancer progression and enhance the efficacy of conventional anticancer therapies. We conducted a systematic search for promising compounds for their anticancer potential that target PKCα using natural compounds from the IMPPAT database. The initial compounds were screened through various tests, including analysis of their physical and chemical properties, PAINS filter, ADMET analysis, PASS analysis, and specific interaction analysis. We selected those that showed high binding affinity and specificity to PKCα from the screened compounds, and we further analyzed them using molecular dynamics simulations (MDS) and principal component analysis (PCA). Various systematic parameters from the MDS analyses suggested that the protein-ligand complexes were stabilized throughout the simulation trajectories of 100 nanoseconds (ns). Our findings indicated that compounds Nicandrenone and Withaphysalin D bind to PKCα with high stability and affinity, making them potential candidates for further research in cancer therapeutics innovation in clinical contexts.Communicated by Ramaswamy H. Sarma.

3.
Neural Regen Res ; 18(10): 2315-2320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056153

RESUMO

Adipose mesenchymal stem cells (ADSCs) have protective effects against glutamate-induced excitotoxicity, but ADSCs are limited in use for treatment of optic nerve injury. Studies have shown that the extracellular vesicles (EVs) secreted by ADSCs (ADSC-EVs) not only have the function of ADSCs, but also have unique advantages including non-immunogenicity, low probability of abnormal growth, and easy access to target cells. In the present study, we showed that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography. In addition, R28 cell pretreatment with ADSC-EVs before injury inhibited glutamate-induced overload of intracellular calcium, downregulation of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor (AMPAR) subunit GluA2, and phosphorylation of GluA2 and protein kinase C alpha in vitro. A protein kinase C alpha agonist, 12-O-tetradecanoylphorbol 13-acetate, inhibited the neuroprotective effects of ADSC-EVs on glutamate-induced R28 cells. These findings suggest that ADSC-EVs ameliorate glutamate-induced excitotoxicity in the retina through inhibiting protein kinase C alpha activation.

4.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36582744

RESUMO

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

5.
J Am Heart Assoc ; 11(8): e023974, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35435021

RESUMO

Background Elevated angiotensin II levels are thought to play an important role in atrial electrical and structural remodeling associated with atrial fibrillation. However, the mechanisms by which this remodeling occurs are still unclear. Accordingly, we explored the effects of angiotensin II on atrial remodeling using transgenic mice overexpressing angiotensin II type 1 receptor (AT1R) specifically in cardiomyocytes. Methods and Results Voltage-clamp techniques, surface ECG, programmed electrical stimulations along with quantitative polymerase chain reaction, Western blot, and Picrosirius red staining were used to compare the atrial phenotype of AT1R mice and their controls at 50 days and 6 months. Atrial cell capacitance and fibrosis were increased only in AT1R mice at 6 months, indicating the presence of structural remodeling. Ca2+ (ICaL) and K+ currents were not altered by AT1R overexpression (AT1R at 50 days). However, ICaL density and CaV1.2 messenger RNA expression were reduced by structural remodeling (AT1R at 6 months). Conversely, Na+ current (INa) was reduced (-65%) by AT1R overexpression (AT1R at 50 days) and the presence of structural remodeling (AT1R at 6 months) yields no further effect. The reduced INa density was not explained by lower NaV1.5 expression but was rather associated with an increase in sarcolemmal protein kinase C alpha expression in the atria, suggesting that chronic AT1R activation reduced INa through protein kinase C alpha activation. Furthermore, connexin 40 expression was reduced in AT1R mice at 50 days and 6 months. These changes were associated with delayed atrial conduction time, as evidenced by prolonged P-wave duration. Conclusions Chronic AT1R activation leads to slower atrial conduction caused by reduced INa density and connexin 40 expression.


Assuntos
Remodelamento Atrial , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Átrios do Coração , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Proteína Quinase C-alfa/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
6.
Ann Transl Med ; 10(3): 132, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284551

RESUMO

Background: The currently available treatment methods are ineffective in reducing mortality or improving outcomes in acute lung injury (ALI). The activation of protein kinase C alpha (PKCα) has recently been implicated in ALI development. We explored the potential therapeutic outcomes of PKCα inhibition in cases of ALI and to elucidate the related mechanisms. Methods: Indexes of lung inflammation and injury were examined in lipopolysaccharide (LPS)-treated C57BL/6J mice (male) and macrophages after pretreatment with a PKCα inhibitor. Tissues were collected to assess lung injury by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage fluid was used to measure the pulmonary edema, hyperinflammatory response, and oxidative stress by bicinchoninic acid (BCA) method and enzyme-linked immunosorbent assay (ELISA). We tested the effect of PKCα inhibition on LPS-induced proliferation, cytotoxicity, oxidative damage, and the release of inflammatory cytokines in macrophages using the Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) cytotoxicity assay kit, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and ELISA. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway related proteins were detected by Western blot, immunohistochemistry (IHC), and immunofluorescence staining. Results: We observed that LPS upregulated PKCα phosphorylation, induced a hyperinflammatory response, and caused lung injury. However, PKCα inhibition effectively attenuated the changes caused by LPS. Moreover, we confirmed that inhibiting PKCα weakened the activity of the NF-κB pathway under LPS-induced ALI. These findings indicated that inhibition of PKCα is protective against LPS-induced hyperinflammatory response in ALI, this effect is likely to attributed to the downregulation of NF-κB signaling pathways. Conclusions: The results showed that PKCα inhibition could attenuate ALI which may closely related to its anti-inflammatory and anti-oxidative effects.

7.
Comput Struct Biotechnol J ; 20: 1198-1207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317226

RESUMO

The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic-pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.

8.
Cancer Res Commun ; 2(11): 1372-1387, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36818489

RESUMO

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of cancer. The different members of the PKC family control cellular events associated with cancer development and progression. Whereas the classical/conventional PKCα isozyme has been linked to tumor suppression in most cancer types, here we demonstrate that this kinase is required for the mitogenic activity of aggressive human prostate cancer cells displaying aberrantly high PKCα expression. Immunohistochemical analysis showed abnormal up-regulation of PKCα in human primary prostate tumors. Interestingly, silencing PKCα expression from aggressive prostate cancer cells impairs cell cycle progression, proliferation and invasion, as well as their tumorigenic activity in a mouse xenograft model. Mechanistic analysis revealed that PKCα exerts a profound control of gene expression, particularly over genes and transcriptional networks associated with cell cycle progression and E2F transcription factors. PKCα RNAi depletion from PC3 prostate cancer cells led to a reduction in the expression of pro-inflammatory cytokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a prominent down-regulation of the immune checkpoint ligand PD-L1. This PKCα-dependent gene expression profile was corroborated in silico using human prostate cancer databases. Our studies established PKCα as a multifunctional kinase that plays pleiotropic roles in prostate cancer, particularly by controlling genetic networks associated with tumor growth and progression. The identification of PKCα as a pro-tumorigenic kinase in human prostate cancer provides strong rationale for the development of therapeutic approaches towards targeting PKCα or its effectors.


Assuntos
Neoplasias da Próstata , Proteína Quinase C-alfa , Masculino , Humanos , Camundongos , Animais , Proteína Quinase C-alfa/genética , Redes Reguladoras de Genes , Proteína Quinase C/genética , Divisão Celular , Neoplasias da Próstata/genética , Isoenzimas/genética
9.
Dev Dyn ; 251(4): 645-661, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34599606

RESUMO

BACKGROUND: Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS: Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS: This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.


Assuntos
Lamina Tipo A , Laminopatias , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Músculo Esquelético , Mutação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-930175

RESUMO

Objective:To observe the effect of berberine on leukemia drug-resistant cell strain K562/A02 to Adriamycin resistance and protein kinase C-alpha (PRKCA) and explore its possible mechanism.Methods:The leukemia K562 cells of human chronic myeloid and Adriamycin resistant strain K562/A02 were cultured in vitro with 2.5-50.0 μmol/L doxorubicin to treat thoese cells and drug resistance of K562 and K562/A02 to Adriamycin was detected, the 50% inhibitory concentration (IC 50) of the drug was calculatedthe resistance of K562 and K562/A02 to doxorubicin was detectd , and, K562/A02 cells were treated with doxorubicin solution at a final concentration of 5 μmol/L, and K562/A02 cells were divided into control group, inhibitor group (50 μmol/L PRKCA inhibitor), low dose berberine group, medium dose berberine group and high dose berberine group. Cell counting (CCK-8) method was used to detect the inhibition rate of cell proliferation, the apoptosis was detected by flow cytometry, real-time fluorescent quantitative PCR assay detects PRKCA, MRP, multidrug resistance related genes (MDR1) levels, and the protein expressions of protein kinase C-α (PRKCA), multidrug resistance related protein (MRP), P-glycoprotein (P-gp) were detected by Western blotting. Results:The IC 50 concentration of K562/A02 to Adriamycin was significantly higher than K562. Compared with the control group, the inhibition rate of cell proliferation and the apoptosis rate in the inhibitor group, low-dose berberine group, medium-dose berberine group, and high-dose berberine group were significantly increased ( P<0.05), the expression of PRKCA mRNA (0.45±0.08, 0.92±0.10, 0.57±0.05, 0.35±0.04 vs. 1.00±0.12), MDR1 gene (0.73±0.08, 0.87±0.09, 0.65±0.07, 0.41±0.05 vs. 1.00±0.11) and PRKCA (0.59±0.09, 0.78±0.12, 0.61±0.11, 0.42±0.07 vs. 0.96±0.14), MRP (0.62±0.08, 0.79±0.13, 0.62±0.10, 0.41±0.06 vs. 0.98±0.14), P-gp (0.55±0.08, 0.75±0.12, 0.59±0.09, 0.35±0.06 vs. 0.92±0.15) were significantly reduced ( P<0.05), and berberine was dose-dependent ( P<0.05); Overexpression of PRKCA can inhibit the effect of berberine on reversing the drug resistance of K562/A02 cells. Conclusion:Berberine may reverse the drug resistance of K562/A02 to Adriamycin by down-regulating PRKCA.

11.
Bioengineered ; 12(1): 5904-5915, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482802

RESUMO

In the present study, mitral valve tissues from three mitral stenosis patients with RHD by valve replacement and two healthy donors were harvested and conducted DNA methylation signature on PRKCA by MeDIP-qPCR. The presence of hypomethylated CpG islands at promoter and 5' terminal of PRKCA was observed in RHD accompanied with highly expressed PRKCA and down-regulated antisense long non-coding RNA (lncRNA) PRKCA-AS1 compared to health control. Furthermore, the enrichments of DNMT1/3A/3B on PRKCA were detected by ChIP-qPCR assay in vivo and in human cardiomyocyte AC16 and RL-14 cells exposed to TNF-α in vitro, and both demonstrated that DNMT1 substantially contributed to DNA methylation. Additionally, PRKCA-AS1 was further determined to bind with promoter of PRKCA via 5' terminal and interact with DNMT1 via 3' terminal. Taken together, our results illuminated a novel regulatory mechanism of DNA methylation on regulating PRKCA transcription through lncRNA PRKCA-AS1, and shed light on the molecular pathogenesis of RHD occurrence.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Proteína Quinase C-alfa/genética , RNA Longo não Codificante/genética , Cardiopatia Reumática , Idoso , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Quinase C-alfa/metabolismo , RNA Longo não Codificante/metabolismo , Cardiopatia Reumática/genética , Cardiopatia Reumática/metabolismo
12.
Pharmacol Res ; 171: 105574, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419228

RESUMO

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.


Assuntos
Antineoplásicos Fitogênicos , Carcinoma Pulmonar de Lewis , Carcinoma Pulmonar de Células não Pequenas , Flavonoides , Neoplasias Pulmonares , Animais , Feminino , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo
13.
Onco Targets Ther ; 14: 3757-3768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168461

RESUMO

INTRODUCTION: Astrocytomas are the most common and aggressive primary brain tumors, and they are classified according to the degree of malignancy on a scale of I to IV, in which grade I is the least malignant and grade IV the highest. Many factors are related to astrocytomas progression as progesterone receptor (PR), whose transcriptional activity could be regulated by phosphorylation by protein kinase C alpha (PKCα) at the residue Ser400. Our aim was to investigate if PR phosphorylation together with PKCα expression could be used as a prognostic factor for astrocytomas malignancy. METHODS: By immunofluorescence, we detected the content of PKCα, PR and its phosphorylation at Ser400 in 46 biopsies from Mexican patients with different astrocytoma malignancy grades; by bioinformatic tools using TCGA data, we evaluated the expression of PR and PKCα mRNA according to astrocytoma malignancy grades. For all statistical analyses, significance was p<0.05. RESULTS: We detected a positive correlation between the tumor grade and the content of PKCα, PR and its phosphorylation at Ser400, as well as the intracellular colocalization of these proteins. Interestingly, using an in silico assay, we found that the PR and PKCα expression at mRNA level has an inverse ratio with astrocytomas tumor grade. DISCUSSION: These results indicate that PR and its phosphorylation at Ser400 site, as well as PKCα and their colocalization, could be considered as possible malignancy biomarkers for astrocytomas grades I-IV.

14.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923093

RESUMO

Oral tongue squamous cell carcinomas (OTSCCs) have an increasing incidence in young patients, and many have an aggressive course of disease. The objective of this study was to identify candidate prognostic protein markers associated with early-onset OTSCC. We performed an exploratory screening for differential protein expression in younger (≤45 years) versus older (>45 years) OTSCC patients in The Cancer Genome Atlas (TCGA) cohort (n = 97). Expression of candidate markers was then validated in an independent Austrian OTSCC patient group (n = 34) by immunohistochemistry. Kaplan-Meier survival estimates were computed, and genomic and mRNA enrichment in silico analyses were performed. Overexpression of protein kinase C alpha (PRKCA) was significantly more frequent among young patients of both the TCGA (p = 0.0001) and the Austrian cohort (p = 0.02), associated with a negative anamnesis for alcohol consumption (p = 0.009) and tobacco smoking (p = 0.02) and poorer overall survival (univariate p = 0.02, multivariate p< 0.01). Within the young subgroup, both overall and disease-free survival were significantly decreased in patients with PRKCA overexpression (both p < 0.001). TCGA mRNA enrichment analysis revealed 332 mRNAs with significant differential expression in PRKCA-upregulated versus PRKCA-downregulated OTSCC (all FDR ≤ 0.01). Our findings suggest that PRKCA overexpression may be a hallmark of a novel molecular subtype of early-onset alcohol- and tobacco-negative high-risk OTSCC. Further analysis of the molecular PRKCA interactome may decipher the underlying mechanisms of carcinogenesis and clinicopathological behavior of PRKCA-overexpressing OTSCC.

15.
Cell Cycle ; 19(24): 3399-3405, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33305655

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-ß) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Benzofenantridinas/farmacologia , Tratamento Farmacológico da COVID-19 , Eritrócitos/imunologia , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Doenças Respiratórias/virologia , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Benzofenantridinas/efeitos adversos , Benzofenantridinas/uso terapêutico , COVID-19/imunologia , COVID-19/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Vírus de RNA/genética , Vírus de RNA/metabolismo , Doenças Respiratórias/enzimologia , Doenças Respiratórias/metabolismo
16.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142761

RESUMO

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Assuntos
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatias/genética , Laminopatias/metabolismo , Proteína Quinase C-alfa/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Músculo Estriado/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Mioblastos/metabolismo , Ratos , Transdução de Sinais
17.
J Appl Toxicol ; 40(11): 1480-1490, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020912

RESUMO

As an organophosphorus ester, tri-ortho-cresyl phosphate (TOCP) has been widely used in agriculture and industry. It is reported that TOCP can induce organophosphate-induced delayed neuropathy (OPIDN) in sensitive animal and human species. However, the exact molecular mechanisms underlying TOCP-induced neurotoxicity are still unknown. In this study, we found that TOCP could induce autophagy by activating protein kinase C alpha (PKCα) signaling in neuroblastoma SK-N-SH cells. PKCα activators could positively regulate TOCP-induced autophagy by increasing the expression levels of neighbor BRCA1 gene protein 1 (NBR1), LC3 and P62 autophagic receptor protein. Furthermore, PKCα activation impaired the ubiquitin-proteasome system (UPS), resulting in inhibition of proteasome activity and accumulation of ubiquitinated proteins. UPS dysfunction could stimulate autophagy to serve as a compensatory pathway, which contributed to the accumulation of the abnormally hyperphosphorylated tau proteins and degradation of impaired proteins of the MAP 2 and NF-H families in neurodegenerative disorders.


Assuntos
Autofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Tritolil Fosfatos/toxicidade , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas tau/metabolismo
18.
Acta Pharm Sin B ; 10(4): 569-581, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322463

RESUMO

Autophagy, defined as a scavenging process of protein aggregates and damaged organelles mediated by lysosomes, plays a significant role in the quality control of macromolecules and organelles. Since protein kinases are integral to the autophagy process, it is critically important to understand the role of kinases in autophagic regulation. At present, intervention of autophagic processes by small-molecule modulators targeting specific kinases has becoming a reasonable and prevalent strategy for treating several varieties of human disease, especially cancer. In this review, we describe the role of some autophagy-related kinase targets and kinase-mediated phosphorylation mechanisms in autophagy regulation. We also summarize the small-molecule kinase inhibitors/activators of these targets, highlighting the opportunities of these new therapeutic agents.

19.
Neural Regen Res ; 15(1): 169-177, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535666

RESUMO

Our previous experiments have discovered that Claudin-15 was up-regulated in Schwann cells of the distal nerve stumps of rat models of sciatic nerve injury. However, how Claudin-15 affects Schwann cell function is still unknown. This study aimed to identify the effects of Claudin-15 on proliferation and apoptosis of Schwann cells cultured in vitro and explore the underlying mechanisms. Primary Schwann cells were obtained from rats. Claudin-15 in Schwann cells was knocked down using siRNA (siRNA-1 group) compared with the negative control siRNA transfection group (negative control group). Claudin-15 in Schwann cells was overexpressed using pGV230-Claudin-15 plasmid (pGV230-Claudin-15 group). The pGV230 transfection group (pGV230 group) acted as the control of the pGV230-Claudin-15 group. Cell proliferation was analyzed with EdU assay. Cell apoptosis was analyzed with flow cytometric analysis. Cell migration was analyzed with Transwell inserts. The mRNA and protein expressions were analyzed with quantitative polymerase chain reaction assay and western blot assay. The results showed that compared with the negative control group, cell proliferation rate was up-regulated; p-AKT/AKT ratio, apoptotic rate, p-c-Jun/c-Jun ratio, mRNA expression of protein kinase C alpha, Bcl-2 and Bax were down-regulated; and mRNA expression of neurotrophins basic fibroblast growth factor and neurotrophin-3 were increased in the siRNA-1 group. No significant difference was found in cell migration between the negative control and siRNA-1 groups. Compared with the pGV230 group, the cell proliferation rate was down-regulated; apoptotic rate, p-c-Jun/c-Jun ratio and c-Fos protein expression increased; mRNA expression of protein kinase C alpha and Bax decreased; and mRNA expressions of neurotrophins basic fibroblast growth factor and neurotrophin-3 were up-regulated in the pGV230-Claudin-15 group. The above results demonstrated that overexpression of Claudin-15 inhibited Schwann cell proliferation and promoted Schwann cell apoptosis in vitro. Silencing of Claudin-15 had the reverse effect and provided neuroprotective effect. This study was approved by the Experimental Animal Ethics Committee of Jilin University of China (approval No. 2016-nsfc001) on March 5, 2016.

20.
J Proteomics ; 206: 103423, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31255707

RESUMO

Adjusting to a wide range of light intensities is an essential feature of retinal rod bipolar cell (RBC) function. While persuasive evidence suggests this modulation involves phosphorylation by protein kinase C-alpha (PKCα), the targets of PKCα phosphorylation in the retina have not been identified. PKCα activity and phosphorylation in RBCs was examined by immunofluorescence confocal microscopy using a conformation-specific PKCα antibody and antibodies to phosphorylated PKC motifs. PKCα activity was dependent on light and expression of TRPM1, and RBC dendrites were the primary sites of light-dependent phosphorylation. PKCα-dependent retinal phosphoproteins were identified using a phosphoproteomics approach to compare total protein and phosphopeptide abundance between phorbol ester-treated wild type and PKCα knockout (PKCα-KO) mouse retinas. Phosphopeptide mass spectrometry identified over 1100 phosphopeptides in mouse retina, with 12 displaying significantly greater phosphorylation in WT compared to PKCα-KO samples. The differentially phosphorylated proteins fall into the following functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein). Two strongly differentially expressed phosphoproteins, BORG4 and TPBG, were localized to the synaptic layers of the retina, and may play a role in PKCα-dependent modulation of RBC physiology. Data are available via ProteomeXchange with identifier PXD012906. SIGNIFICANCE: Retinal rod bipolar cells (RBCs), the second-order neurons of the mammalian rod visual pathway, are able to modulate their sensitivity to remain functional across a wide range of light intensities, from starlight to daylight. Evidence suggests that this modulation requires the serine/threonine kinase, PKCα, though the specific mechanism by which PKCα modulates RBC physiology is unknown. This study examined PKCα phosophorylation patterns in mouse rod bipolar cells and then used a phosphoproteomics approach to identify PKCα-dependent phosphoproteins in the mouse retina. A small number of retinal proteins showed significant PKCα-dependent phosphorylation, including BORG4 and TPBG, suggesting a potential contribution to PKCα-dependent modulation of RBC physiology.


Assuntos
Fosfoproteínas/metabolismo , Proteína Quinase C-alfa/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Retina/metabolismo , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/análise , Fosforilação/genética , Proteína Quinase C-alfa/genética , Processamento de Proteína Pós-Traducional/genética , Proteoma/análise , Células Bipolares da Retina/química , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/química , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...